Properties of Integers

Created: Saturday, 16 July 2011 04:39 | Published: Saturday, 16 July 2011 04:39 | Written by Super User | Print

Closure property

<u>Closure</u> property under addition

Integers are closed under addition, i.e. for any two integers, a and b, a+b is an integer.

Example: 3+4=7, 3 and 4 are integers and when we add them the answer we get is 7 which is also an integer, hence the property.

Closure property under subtraction

Integers are closed under subtraction, i.e. for any two integers, a and b,

a-b is an integer.

```
Example: -21 - (-9) = -12, -21 and -9 are integers and when we subtract them the answer we get is -12 which is also an integer, hence the property.
```

Closure property under multiplication

Integers are closed under multiplication, i.e. for any two integers,

a and b, **ab** is an integer.

Example: 5x 6 = 30, 5 and 6 are integers and when we multiplied them the answer we get is 30 which is also an integer, hence the property.

Closure property under division

Integers areNOT closed under division, i.e. for any two integers, a and b, a/b may not be integer.

Commutative property

<u>Commutative</u> property under addition

Addition is commutative for integers. For any two integers, a and b, $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ Example: 5 + (-6) = 5 - 6 = 1

(-6)+5 = -6 + 5= -1 ? 5 + (-6) = (-6) + 5

Commutative property under subtraction

Subtraction is **NOT** commutative for integers. For any two integers, a and b, a - b ? b - a

Example: 8- (-6) = 8 + 6 = 14 (-6) - 8 = -6 - 8 = -14 ? 8 - (-6) ? -6 - 8

Commutative property under multiplication

Multiplication is commutative for integers. For any two integers, a and b,ab=ba

Example: $9 \times (-6) = -(9 \times 6) = -54$ $(-6) \times 9 = -(6 \times 9) = -54$ $? 9 \times (-6) = (-6) \times 9$

Commutative property under division

Division isNOT commutative for integers. For any two integers, a and b,a/b ? b/a

Example: 3/6=1/2 6/3 = 2 ? 3/6 ? 6/3

Associative property

Associative property under addition

Addition is associative for integers. For any three integers, a, b and c,a+(b+c)=(a+b)+c

Example: 5 + (-6 + 4) = 5 - 2 = 3(5 - 6) + 4 = -1 + 4 = 3 ? 5 + (-6+4) = (5 - 6) + 4

Associative property under subtraction

Subtraction is associative for integers. For any three integers, a, b and c **a-(b-c)**? (**a-b**)-c

Example:5 - (6-4)=5-2=3; (5-6)-4=-1-4=-5 ? 5 - (6-4) ? (5-6)-4

Associative property under multiplication

Multiplication is associative for integers. For any three integers, a, b and c, $(a \times b) \times c = a \times (b \times c)$

Example:[(-3)×(-2))×4]=(6×4)=24 [(-3)×(-2×4)]=(-3×-8)=24 ? [(-3)×(-2))×4]=[(-3)×(-2×4)]

Associative property under division

Division isNOT associative for integers.

Distributive property

Distributive property of multiplication over addition

```
For any three integers, a, b and c, a×(b+c) = a×b+a×c
Example: -2 (4 + 3) = -2 (7) = -14
-2(4+3)=(-2×4)+(-2×3)
=(-8)+(-6)
=-14
```

Distributive property of multiplication over subtraction

```
For any three integers, a, b and c, a×(b-c)= a×b-a×c
Example: -2 (4- 3) = -2 (1) = -2
-2(4-3)=(-2×4)-(-2×3)
=(-8)-(-6)
=-2
```

The distributive property of multiplication over the operations of addition and subtraction is true in the case of integers.

Identity under addition

```
Integer 0 is the <u>identity</u> under addition. That is, for an integer a, a+0=0+a=a
Example: 4+0=0+4=4
```

Identity under multiplication

The integer 1 is the identity under multiplication. That is, for an integer a, $1 \times a = a \times 1 = a$ Example: $(-4) \times 1 = 1 \times (-4) = -4$

Now try it yourself! Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring :

<u>eAgeTutor.com</u> is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

<u>Contact us</u> today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links :

- http://en.wikipedia.org/wiki/Integer
- http://en.wikipedia.org/wiki/Closure (mathematics)
- http://en.wikipedia.org/wiki/Commutativity
- http://en.wikipedia.org/wiki/Associativity
- http://en.wikipedia.org/wiki/Distributivity
- http://en.wikipedia.org/wiki/Identity_element

Category:ROOT