TRIGONOMETRIC RATIOS OF COMPLEMENTARY ANGLES

Created: Monday, 19 September 2011 04:54 |Published: Monday, 19 September 2011 04:54| Written by Super User | Print

Introduction to Complemtary Angles

What are Complementary Angles?

A pair of angles is complementary if the sum of their measures is 90 degrees.
In the adjoining ? $\mathrm{ABC}, ? \mathrm{~A}$ and ? C are pair of complementary angles. Following this we have, ? $\mathrm{A}+? \mathrm{C}=90^{\circ}$.
Also, ? $\mathrm{C}=90^{\circ}-$? A...(i)
We already are aware oftrigonometric ratios, now we will define all six trigonometric ratios with respect to ? A and ? C.

Trigonometric ratios with respect to ? A

$\operatorname{Sin} \mathrm{A}=\mathrm{BC} / \mathrm{AC}$
$\operatorname{Cos} \mathrm{A}=\mathrm{AB} / \mathrm{AC}$
Tan $\mathrm{A}=\mathrm{BC} / \mathrm{AB}$
$\operatorname{Cosec} \mathrm{A}=\mathrm{AC} / \mathrm{BC}$
$\operatorname{Sec} A=A C / A B$
$\operatorname{Cot} \mathrm{A}=\mathrm{AB} / \mathrm{BC}$

Trigonometric ratios with respect to ? C

$\operatorname{Sin} C=A B / A C$
$\operatorname{Cos} \mathrm{C}=\mathrm{BC} / \mathrm{AC}$
Tan $\mathrm{C}=\mathrm{AB} / \mathrm{BC}$
$\operatorname{Cosec} \mathrm{C}=\mathrm{AC} / \mathrm{AB}$
$\operatorname{Sec} \mathrm{C}=\mathrm{AC} / \mathrm{BC}$
$\operatorname{Cot} \mathrm{C}=\mathrm{BC} / \mathrm{AB}$

Substituting $\mathrm{C}=90^{\circ}-\mathrm{A}($ from (i))
$\operatorname{Sin}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{AB} / \mathrm{AC}$
$\operatorname{Cos}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{BC} / \mathrm{AC}$
$\operatorname{Tan}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{AB} / \mathrm{BC}$
$\operatorname{Cosec}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{AC} / \mathrm{AB}$
$\operatorname{Sec}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{AC} / \mathrm{BC}$
$\operatorname{Cot}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{BC} / \mathrm{AB}$

Now, compare the ratios in (I) and (III)
$\operatorname{Sin}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{AB} / \mathrm{AC}=\operatorname{Cos} \mathrm{A}$
$\operatorname{Cos}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{BC} / \mathrm{AC}=\operatorname{Sin} \mathrm{A}$
$\operatorname{Tan}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{AB} / \mathrm{BC}=\operatorname{Cot} \mathrm{A}$
$\operatorname{Cosec}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{AC} / \mathrm{AB}=\operatorname{Sec} \mathrm{A}$
$\operatorname{Sec}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{AC} / \mathrm{BC}=\operatorname{Cosec} \mathrm{A}$
$\operatorname{Cot}\left(90^{\circ}-\mathrm{A}\right)=\mathrm{BC} / \mathrm{AB}=\operatorname{Tan} \mathrm{A}$

So,
$\operatorname{Sin}\left(90^{\circ}-\mathrm{A}\right)=\operatorname{Cos} \mathrm{A}$
$\operatorname{Cos}\left(90^{\circ}-A\right)=\operatorname{Sin} A$
$\operatorname{Tan}\left(90^{\circ}-\mathrm{A}\right)=\operatorname{Cot} \mathrm{A}$
$\operatorname{Cosec}\left(90^{\circ}-A\right)=\operatorname{Sec} A$
$\operatorname{Sec}\left(90^{\circ}-A\right)=\operatorname{Cosec} A$
$\operatorname{Cot}\left(90^{\circ}-\mathrm{A}\right)=\operatorname{Tan} \mathrm{A}$

For all values of angle A lying between 0° and 90°.
Now, we will check whether this holds for $\mathrm{A}=0^{\circ}$ or $\mathrm{A}=90^{\circ}$
$\operatorname{Tan} 0^{\circ}=0=\operatorname{Cot} 90^{\circ}$
$\operatorname{Sec} 0^{\circ}=1=\operatorname{Cosec} 90^{\circ}$
$\operatorname{Sec} 90^{\circ}, \operatorname{Cosec} 90^{\circ}, \operatorname{Tan} 90^{\circ}$ and $\operatorname{Cot} 90^{\circ}$ are not defined.

On the basis of above discussion, we will solve the following problem:
Evaluate: Tan 65°
$\operatorname{Cot} 25^{\circ}$

We know: $\operatorname{Cot} \mathrm{A}=\operatorname{Tan}\left(90^{\circ}-\mathrm{A}\right)$
$\operatorname{Cot} 25^{\circ}=\operatorname{Tan}\left(90^{\circ}-25^{\circ}\right)=\operatorname{Tan} 65^{\circ}$
That is, $\operatorname{Tan} 65^{\circ}=\operatorname{Tan} 65^{\circ}=1$
$\operatorname{Cot} 65^{\circ} \operatorname{Tan} 65^{\circ}$

Now try it yourself! Should you still need any help,click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the
success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links:

- http://en.wikipedia.org/wiki/Complementary_angles
- http://www.purplemath.com/modules/basirati.htm

Category:ROOT
Joomla SEF URLs by Artio

