TRIGONOMETRIC RATIOS OF SOME SPECIFIC ANGLES

Created: Monday, 19 September 2011 05:42 |Published: Monday, 19 September 2011 05:42| Written by Super User | Print

Introduction to Trig Ratios

The major functions of trigonometric ratios are sine, cosine, tangent, cosecant, secant and cotangent.

right angled triangle.

Some specific angles are:

- 0° and 90°
- 45°
- 30° and 60°

In ? ABC , right - angled at B , and $? \mathrm{BAC}=$?

So, from ?ABC, we have
Sin ? $=\mathrm{BC} / \mathrm{AC}$
$\operatorname{Cos} ?=\mathrm{AB} / \mathrm{AC}$
$\operatorname{Tan} ?=\mathrm{BC} / \mathrm{AB}$

Case I: ?A is becoming small

If ? A is made smaller and smaller in the ?ABC, till it becomes zero. As ?A gets smaller and smaller, the length of the BC decreases. The point C gets closer to point B , and finally when A becomes very close to $0^{\circ}, \mathrm{AC}$ becomes almost the same as AB .

When ?A is very close to $0^{\circ}, \mathrm{BC}$ gets very close to 0 and so the value of
$\operatorname{Sin} A=B C / A C$ is very close to 0 .

Also, when A is very close to $0^{\circ}, \mathrm{AC}$ is same as AB and so the value of $\operatorname{Cos} \mathrm{A}=\mathrm{AB} / \mathrm{AC}$ is very close to 1 .

From the above discussion, we have
$\operatorname{Sin} 0^{\circ}=0$
$\operatorname{Cosec} 0^{\circ}=1 / \operatorname{Sin} 0^{\circ}=1 / 0=$ not defined
$\operatorname{Cosec} 0^{\circ}=$?
$\operatorname{Cos} 0^{\circ}=1$
$\operatorname{Sec} 0^{\circ}=1 / \operatorname{Cos} 0^{\circ}=1 / 1=1$
$\operatorname{Sec} 0^{\circ}=1$

Using Sin and Cos values, we can find Tan 0°
$\operatorname{Tan} 0^{\circ}=\operatorname{Sin} 0^{\circ} / \operatorname{Cos} 0^{\circ}=0$
$\operatorname{Tan} 0^{\circ}=0$

Also, $\operatorname{Cot} 0^{\circ}=1 / \operatorname{Tan} 0^{\circ}=1 / 0=$ not defined
$\operatorname{Cot} 0^{\circ}=$?

Case II: ?A is becoming large

Now, let's see when ?A is made larger and larger in ?ABC till it becomes 90°. As ?A gets larger and larger, ?C gets smaller and smaller. So, the length of the side AB goes on decreasing. The point A gets closer to point B. Finally when ?A is very close to 90°, ? C becomes very close to 0° and the side AC almost coincides with side BC .

When ?C is very close to $0^{\circ}, \mathrm{A}$ is very close to 90°, side AC is nearly the same as side BC .

So, Sin A is very close to 1 .

From above discussion we get,
$\operatorname{Sin} 90^{\circ}=1$
Cosec $90^{\circ}=1$
$\operatorname{Cos} 90^{\circ}=0$
$\operatorname{Sec} 90^{\circ}=$?
Tan $90^{\circ}=$?
$\operatorname{Cot} 90^{\circ}=0$

Trigonometric Ratios of $\mathbf{4 5}^{\circ}$

In $? \mathrm{ABC}$, right angled at B , if one angle is 45 , then the other angle by angle sum property of triangle will also be 45 .
? $\mathrm{A}=? \mathrm{C}=45^{\circ}$

So, $\mathrm{BC}=\mathrm{AB}$ (Isosceles triangle property)

Let, $\mathrm{AB}=\mathrm{BC}={ }^{\prime} \mathrm{a}$ '

Then byPythagoras theorem, $\mathrm{AC} 2=\mathrm{AB} 2+\mathrm{BC} 2$
$\mathrm{AC} 2=\mathrm{a} 2+\mathrm{a} 2=2 \mathrm{a} 2$
$\mathrm{AC}=\mathrm{a} ? 2$.

Using formulas fortrigonometric ratios:
$\operatorname{Sin} 45^{\circ}=\underline{\text { Side opposite to angle } 45^{\circ}}=\mathrm{a} / \mathrm{a} ? 2=1 / ? 2$
Hypotenuse

Hypotenuse
$\operatorname{Tan} 45^{\circ}=\underline{\text { Side opposite to angle } 45^{\circ}}=\mathrm{a} / \mathrm{a}=1$
Side adjacent to angle 45°

Also, $\operatorname{Cosec} 45^{\circ}=? 2, \operatorname{Sec} 45^{\circ}=? 2, \operatorname{Cot} 45^{\circ}=1$

Trigonometric Ratios of 30° and 60°

Let ? ABC , be anequilateral triangle. So, ? $\mathrm{A}=? \mathrm{~B}=? \mathrm{C}=60^{\circ}$

Drawperpendicular AD from A to the side BC .

Now, ?ABD ? ?ACD (by ASA)

Therefore, $\mathrm{BD}=\mathrm{DC}$
?BAD $=$?CAD $($ by CPCT $)$

Consider, ?ABD
$A=30, B=60, D=90$

Let $A B=x$

So, BD = $\mathrm{x} / 2$

And we will find the length of AD by Pythagoras theorem.
$\mathrm{AB} 2=\mathrm{AD} 2+\mathrm{BD} 2$
$\mathrm{AB} 2-\mathrm{BD} 2=\mathrm{AD} 2$
$\mathrm{x} 2-\mathrm{x} 2 / 4=\mathrm{AD} 2$
$\mathrm{AD} 2=3 \times 2 / 4$
$\mathrm{AD}=\mathrm{x} ? 3 / 2$

Using formulas for trigonometric ratios:

Hypotenuse
$\operatorname{Cos} 30^{\circ}=\underline{\text { Side adjacent to angle } 30^{\circ}}=x ? 3 / 2 / x=? 3 / 2$
Hypotenuse
$\operatorname{Tan} 30^{\circ}=\underline{\text { Side opposite to angle } 30^{\circ}}=x / 2 / x ? 3 / 2=1 / ? 3$
Side adjacent to angle 30°

Also, $\operatorname{Cosec} 30^{\circ}=2, \operatorname{Sec} 30^{\circ}=2 / ? 3, \operatorname{Cot} 30^{\circ}=? 3$

Similarly,
$\operatorname{Sin} 60^{\circ}=? 3 / 2$
$\operatorname{Cosec} 60^{\circ}=2 / ? 3$
$\operatorname{Cos} 60^{\circ}=1 / 2$
$\operatorname{Sec} 60^{\circ} 2$
$\operatorname{Tan} 60^{\circ}=? 3$
$\operatorname{Cot} 60^{\circ}=1 / ? 3$

Now try it yourself! Should you still need any help,click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links:

http://www.purplemath.com/modules/basirati.htm

- http://en.wikipedia.org/wiki/Right triangle
- http://en.wikipedia.org/wiki/Triangle\#Trigonometric_ratios_in_right_triangles
- http://en.wikipedia.org/wiki/Pythagorean_theorem
- http://en.wikipedia.org/wiki/Equilateral triangle
- http://en.wikipedia.org/wiki/Equilateral triangle

Category:ROOT
Joomla SEF URLs by Artio

