INVERTIBLE MATRICES

Created: Friday, 25 November 2011 06:11 | Published: Friday, 25 November 2011 06:11| Written by Super User | Print

What are Invertible matrices?

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{32} & A_{33}
\end{array}\right]
$$

If A is a square matrix of order m, and if there exists another square matrix B of the same order m such that $A B=B A=I$, then B is called the inverse matrix of A and is denoted by A^{-1}. In this case we say A is invertible.

Important Remarks:

- Inverse of a square matrix, if it exists, is unique.
- If A and B are invertible matrices of the same order, then $(A B)^{-1}=B^{-1} A^{-1}$

Inverse of a matrix by elementary operations

There are six operations (transformations) on a matrix, three of which are due to rows and three due to columns, which are known as elementary operations or transformations.
i) The interchange of any two rows or two columns. Symbolically the interchange of $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ rows is denoted by $\mathrm{R}_{\mathrm{i}} \longleftrightarrow \mathrm{R}_{\mathrm{j}}$ and the interchange of $i^{\text {th }}$ and $j^{\text {th }}$ column is denoted by $C_{i} \leftrightarrow C_{j}$
ii) The multiplication of the elements of any row or column by a non zero number. Symbolically the multiplication of each element of the $i^{\text {th }}$ row by k, where k ? 0 is denoted by $R_{i} \longleftrightarrow k R_{i}$. The corresponding column operation is denoted by
$\mathrm{C}_{\mathrm{i}} \longleftrightarrow \mathrm{kC}_{\mathrm{i}}$
iii) The addition to the elements of any row or column, the corresponding elements of any other row or column multiplied by any non zero number. Symbolically, the addition to the elements of ith row, the corresponding elements of jth row multiplied by k is denoted by $R_{i} \leftrightarrow R_{i}+k R_{j} \quad$ The corresponding column operation is denoted by $C_{i} \leftrightarrow C_{i}+k C_{j}$

Example: Obtain the inverse of the following matrix using elementary operation
$A=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right)$
Solution: We know A=IA

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \mathrm{A} \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
3 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad A \quad R_{1} \longleftrightarrow R_{2} \\
& \left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & -5 & -8
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & -3 & 1
\end{array}\right) \quad A \quad R_{3} \rightarrow R_{1}-3 R_{1} \\
& \left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & -5 & -8
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & 0 & 0 \\
0 & -3 & 1
\end{array}\right] A \quad R_{1} \longrightarrow R_{1}-2 R_{2} \\
& \left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & 0 & 0 \\
5 & -3 & 1
\end{array}\right) A \quad R_{3} \longrightarrow R_{3}+5 R_{2} \\
& \left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) \quad=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & 0 & 0 \\
5 / 2 & -3 / 2 & 1 / 2
\end{array}\right) \quad A \quad R_{3} \rightarrow 1 / 2 R_{3} \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
1 & 0 & 0 \\
5 / 2 & -3 / 2 & 1 / 2
\end{array}\right) A \quad R_{1} \longrightarrow R_{1}+R_{2} \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
-4 & 3 & -1 \\
5 / 2 & -3 / 2 & 1 / 2
\end{array}\right) \quad A \quad R_{2} \longrightarrow R_{2}-2 R_{3} \\
& \text { Hence } A^{-1}=\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
-4 & 3 & -1 \\
5 / 2 & -3 / 2 & 1 / 2
\end{array}\right)
\end{aligned}
$$

Now try it yourself! Should you still need any help,click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the
success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links:

http://www.britannica.com/EBchecked/topic/561660/square-matrix
http://en.wikipedia.org/wiki/Invertible_matrix
http://www.purplemath.com/modules/mtrxrows.htm

Category:ROOT
Joomla SEF URLs by Artio

