Login

Articles

DERIVATIVES OF POLAR AND VECTOR FUNCTION

Print

Differentiation of Vectors

derivativesofpolarandvectorfunction1




If a vector R varies continuously as a scalar variable t changes, then R is said to be a function of t and is written as R = F(t).

Just as in scalar calculus, we define derivative of a vector function R = F(t) as
                        


                                        
 derivativesofpolarandvectorfunction11 and write it as dR/dt or dF/dt or F'(t).

                     
General rules of differentiation are similar to those of ordinary calculus provided the order of factors in vector products is maintained.  Thus, if Ф, F, G, H are scalar and vector functions of a scalar variable t, we have
derivativesofpolarandvectorfunction6


  1. derivativesofpolarandvectorfunction7

  2. derivativesofpolarandvectorfunction8
    Example:  If A= 5t2I + tJ – t3K, B=sintI - cos(t)J then
    Find i) d/dt(A.B)
          ii) d/dt(AxB)
    Solution: i) d/dt(A.B) = A.(dB/dt) + (dA/dt).B
                  = (5t2I+tJ-t3K)[costI –(-sint)J] + (10tI+J-3t2K)(sintI - costJ)
                  = (5t2cost-tsint) + (10tsint-cost)
                  = 5t2 cos(t) + 11tsin(t) – cos(t).
         ii) d/dt(AXB) = Ax(dB/dt) + (dA/dt)xB
                   = (5t2I+tJ-t3K)x(costI +sintJ) + (10tI+J-3t2K)x(sintI -costJ)
                  = (t3sint-3t2cost)I – t2(tcost+3sint)J + [(5t2-1)sint-11tcost]K


Derivative of Polar Functions

Let r = r(θ) represent a polar curve, then
                 dy = dy/dθ = r'sinθ + rcosθ

                     __     ______     ______   _____
                 dx    dx/dθ    r'cosθ – rsinθ
Since x=rcosθ
        dx/dθ = r(-sinθ) + cosθ. r' = r'cosθ – rsinθ
         y = rsinθ
        dy/dθ = rcosθ + sinθ. r' = r'sinθ + rcosθ
dy = dy/dθ = r'sinθ + rcosθ

___    ______   ______   ______
dx    dx/dθ    r'cosθ – rsinθ
Example: Find the derivative of r = θcosθ
Example: dy/dx = [θ(-sinθ) + cosθ] sinθ + θ cosθ (cosθ)
                        ________________________________                 

                        [θ(-sinθ) + cosθ] cosθ – θ cosθ sinθ
             
                =   -θsin2θ + cosθ sinθ + θcos2θ

                    _________________________                   

                    -θsinθ cosθ + cos2θ – θcosθ sinθ
              
                = cosθ sinθ + θ(cos2θ – sin2θ)

                  _________________________                 

                      cos2θ - 2θ cosθ sinθ
              
                 =   cosθ sinθ+ θcos2θ           

                     _______________

                     cos2θ - 2θ cosθ sinθ

Example: Find the slope of the tangent line to the unit circle x= cost, y = sint (0≤t≤2π) at the point t = π/6
Solution: The slope at a general point on the circle is dy/dx
derivativesofpolarandvectorfunction9
Thus, the slope at t = π/6 is
              dy/dx]t=π/6    = -cot π/6 = -√3
Example: Find the slope of the tangent line to the circle r = 4cosθ at the point where θ = π/4
Solution: derivativesofpolarandvectorfunction10
Thus, at the point where θ = π/4 the slope of the tangent line is dy/dx]θ=π/4 = -cotπ/2 = 0 which implies that the circle has a horizontal tangent line at the point where θ = π/4

Now try it yourself!  Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider.  Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.
 

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference links:

    

Archives

Blog Subscription