Various forms of a Plane

Created: Thursday, 15 September 2011 07:21 | Published: Thursday, 15 September 2011 07:21 | Written by Super User | Print

Plane - Introduction

A plane can be determined uniquely if anyone of the following is known:
(i) The normal to the plane and its distance from origin is given.
(ii) It passes through a point and is perpendicular to a given direction.
(iii) It passes through three given non collinear points.

Equation of plane in normal form

Vector Form: If $\overline{\mathrm{r}}$ is the position vector of a point P in the plane, d is the perpendicular distance from origin and ? is the unit normal to the plane then its vector equation is given by

$$
\overline{\mathrm{r}} . ?=\mathrm{d}
$$

Cartesian Form: If $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is a point in the plane, d is the perpendicular distance from origin and $<1, \mathrm{~m}, \mathrm{n}>$ are the direction cosines of ?, then the Cartesian form of the plane is given by

$$
1 \mathrm{x}+\mathrm{my}+\mathrm{nz}=\mathrm{d}
$$

Note: If $\langle\mathrm{a}, \mathrm{b}, \mathrm{c}>$ are the direction ratios of the normal to the plane then the equation is $\mathrm{ax}+\mathrm{by}+\mathrm{cz}=\mathrm{d}$

Equation of a plane perpendicular to a given vector and passing through a given point

Vector Form: If \bar{a} is the position vector of a given point and $\overline{\mathrm{N}}$ is the perpendicular vector then its equation is given by

$$
(\overline{\mathrm{r}}-\overline{\mathrm{a}}) \cdot \overline{\mathrm{N}}=0
$$

Cartesian Form: If $\mathrm{A}(\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1)$ is the given point and $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is a general point in the plane and A, B and C are the direction ratios of $\overline{\mathrm{N}}$ then the Cartesian equation is given by

$$
\mathrm{A}\left(\mathrm{x}-\mathrm{x}_{1}\right)+\mathrm{B}\left(\mathrm{y}-\mathrm{y}_{1}\right)+\mathrm{C}\left(\mathrm{z}-\mathrm{z}_{1}\right)=0
$$

Equation of a plane passing through three non collinear points

Vector Form: If \bar{a}, \bar{b} and \bar{c} are the position vectors of three points and $\overline{\mathrm{r}}$ be any point in the plane, then the equation of the plane passing through three given points is

$$
(\overline{\mathrm{r}}-\overline{\mathrm{a}}) \cdot[(\overline{\mathrm{b}}-\overline{\mathrm{a}}) X(\overline{\mathrm{c}}-\overline{\mathrm{a}})]=0
$$

Cartesian Form: If $\left(\mathrm{x}_{1}, \mathrm{y} 1, \mathrm{z} 1\right),(\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2)$ and $(\mathrm{x} 3, \mathrm{y} 3, \mathrm{z} 3)$ are the three given points then equation of the plane is
$\left|\begin{array}{ccc}\mathbf{x}-\mathbf{x}_{1} & \mathbf{y}-\mathbf{y}_{1} & \mathbf{z}-\mathbf{z}_{1} \\ \mathbf{x}_{2}-\mathbf{x}_{1} & \mathbf{y}_{2}-\mathbf{y}_{1} & z_{2}-z_{1} \\ \mathbf{x}_{3}-\mathbf{x}_{1} & \mathbf{y}_{3}-\mathbf{y}_{1} & z_{3}-\mathbf{z}_{1}\end{array}\right|=\mathbf{0}$

Intercept Form of a plane

If the plane makes intercepts a, b and c on x, y and z axes respectively
then its equation in intercept form is given by

- - -

Here coordinates of A, B and C are $\mathrm{A}(\mathrm{a}, 0,0), \mathrm{B}(0, \mathrm{~b}, 0)$ and $\mathrm{C}(0,0, \mathrm{c})$ respectively.

Intersection of two planes

Vector Form: If $\overline{\mathrm{r}} . \bar{n}_{1}=\mathrm{d}_{1}$ and $\overline{\mathrm{r}} . \overline{\mathrm{n}}_{2}=\mathrm{d}_{2}$ are the vector equation of two planes then equation of the plane passing through the intersection of these two planes is given by

$$
\overline{\mathrm{r}} .\left(\overline{\mathrm{n}}_{1}+? \overline{\mathrm{n}}_{2}\right)=\mathrm{d}_{1}+? \mathrm{~d}_{2}
$$

Cartesian Form: If $A_{1} x+B_{1} y+C_{1} z=d_{1}$ and $A_{2} x+B_{2} y+C_{2} z=d_{2}$ are the equations of two planes in the Cartesian form then the equation of the plane passing through the intersection of the given planes is

$$
\left(\mathrm{A}_{1} \mathrm{x}+\mathrm{B}_{1} \mathrm{y}+\mathrm{C}_{1} \mathrm{z}-\mathrm{d}_{1}\right)+?\left(\mathrm{~A}_{2} \mathrm{x}+\mathrm{B}_{2} \mathrm{y}+\mathrm{C}_{2} \mathrm{z}-\mathrm{d}_{2}\right)=0
$$

In general, if P_{1} and P_{2} are the equations of two planes then the equation of the plane passing through the intersection of P_{1} and P_{2} is given by

$$
\mathrm{P}_{1}+? \mathrm{P}_{2}=0
$$

Example: Find the equation of the plane through the intersection of the planes $x+y+z-6=0$ and $2 x+3 y+4 z+5=0$ ant the point $(1,1,1)$

Solution: Equation of the plane passing through $x+y+z-6=0$ and $2 x+3 y+4 z+5=0$ is given by

$$
\begin{equation*}
(x+y+z-6)+?(2 x+3 y+4 z+5)=0 \tag{1}
\end{equation*}
$$

Passes through ($1,1,1$)
$(1+1+1-6)+?(2+3+4+5)=0$
?=3/14

Substitute the value of? in (1), so that the equation is
$(x+y+z-6)+3 / 14(2 x+3 y+4 z+5)=0$
$20 x+23 y+26 z-69=0$, which is the required equation.

Now try it yourself! Should you still need any help,click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference links:

- http://en.wikipedia.org/wiki/Plane_\(geometry\)
- http://en.wikipedia.org/wiki/Surface_normal
- http://www.cs.fit.edu/~wds/classes/cse5255/thesis/planeEqn/planeEqn.html
- http://www.wikidoc.org/index.php/Plane \%28mathematics\%29
- http://mathworld.wolfram.com/Plane.html

Category:ROOT
Joomla SEF URLs by Artio

