## Angle between two planes

Created: Friday, 16 September 2011 08:24 | Published: Friday, 16 September 2011 08:24| Written by Super User | Print

## Angle between two planes - Introduction



Theangle between two planes is defined as the angle between their normals If $?$ is the angle between two planes, then so is $180-?$. We shall take the acute angle as theangle between two planes

Vector Form: If $\overline{\mathrm{r}} \cdot \bar{n}_{1}=\mathrm{d}_{1}$ and $\overline{\mathrm{r}} \cdot \bar{n}_{2}=\mathrm{d}_{2}$ are the equation of two planes then angle between them is given by the equation

$$
\begin{aligned}
& \cos \theta=\left|\frac{\bar{n}_{1} \cdot \bar{n}_{2}}{\left|\bar{n}_{1}\right|\left|\bar{n}_{2}\right|}\right| \\
& \theta=\cos ^{-1}\left[\frac{\bar{n}_{1} \cdot \bar{n}_{2}}{\left|\bar{n}_{1}\right|\left|\bar{n}_{2}\right|}\right]
\end{aligned}
$$

Cartesian Form: If $A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ and $A_{2} x+B_{2} y+C_{2} z+D_{2}=0$ are the Cartesian equations of two planes and ? is the angle between them then

$$
\cos \theta=\left|\frac{\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{B}_{1} \mathrm{~B}_{2}+\mathrm{C}_{1} C_{2}}{\sqrt{\mathrm{~A}_{1}^{2}+\mathrm{B}_{1}^{2}+\mathrm{C}_{1}^{2}} \sqrt{\mathrm{~A}_{2}^{2}+\mathrm{B}_{2}^{2}+\mathrm{C}_{2}^{2}}}\right|
$$

## Condition for parallelism and perpendicularity

1. If the planes are parallel then $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
2. If the planes are perpendicular then $\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{B}_{1} \mathrm{~B}_{2}+\mathrm{C}_{1} \mathrm{C}_{2}=0$

## Coplanarity of Two Lines

Vector Form: If $\overline{\mathrm{r}}=\overline{\mathrm{a}}_{1}+? \overline{\mathrm{~b}}_{1}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}}_{2}+? \overline{\mathrm{~b}}_{2}$ are the equations of two lines then they are said to be coplanar if $\left(\overline{\mathrm{a}}_{2}-\bar{a}_{1}\right) \cdot\left(\overline{\mathrm{b}}_{1} \times \overline{\mathrm{b}}_{2}\right)=0$ Cartesian Form: If $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ are two points with the direction ratios of parallel vectors $<\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}>$ and $<\mathrm{a}_{2}$ , $\mathrm{b}_{2}, \mathrm{c}_{2}>$, then the lines are said to be coplanar if

$$
\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=0
$$

## Distance of a point from a plane

Vector Form: If the equation of the plane is in the form $\overline{\mathrm{r}} \cdot \overline{\mathrm{N}}=\mathrm{d}$, where $\overline{\mathrm{N}}$ is normal to the plane, then the perpendicular distance is $|\bar{a} \cdot \bar{N}-\mathrm{d}|$
$|\bar{N}|$

The length of perpendicular from origin $O$ to the plane $\overline{\mathrm{r}} \cdot \overline{\mathrm{N}}=\mathrm{d}$ is $|\mathrm{d}| /|\overline{\mathrm{N}}|$
Cartesian Form: If $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ be the given point with position vector $\overline{\mathrm{a}}$ and $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}$ be the equation of the plane then the perpendicular distance from $P$ to the plane is given by $d=\left\lfloor\left.\frac{A x_{1}+B y_{1}+C z_{1}-D}{\sqrt{A^{2}+B^{2}+C^{2}}} \right\rvert\,\right.$

## Angle between a Line and a Plane

If $\overline{\mathrm{r}}=\overline{\mathrm{a}}+? \overline{\mathrm{~b}}$ be the equation of the line and $\overline{\mathrm{r}} \cdot \overline{\mathrm{n}}=\mathrm{d}$ be the equation of the plane the angle between them is given by

$$
\begin{aligned}
& \sin \Phi=\left|\frac{\overline{\mathrm{b}} \cdot \bar{n}}{|\overline{\mathrm{~b}}||\bar{n}|}\right| \\
& \Phi=\sin ^{-1}\left[\frac{\overline{\mathrm{~b} \cdot \bar{n}}}{\mid \overline{\mathrm{b}| | \mathrm{n} \mid}}\right]
\end{aligned}
$$

Example: Find the distance of a point $(2,5,-3)$ from the plane $6 x-3 y+2 z-4=0$
Solution: Distance $\frac{d=\frac{|6 \times 2-3 \times 5+2 x-3-4|}{\sqrt{36+9+4}}}{}$

$$
=\frac{|12-15-6-4|}{\sqrt{49}}
$$

$$
=13 / 7
$$

Now try it yourself! Should you still need any help,click here to schedule live online session with e Tutor!

## About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

## Links:

- http://en.wikipedia.org/wiki/Angle\#Angles_between_curves
- http://schools-wikipedia.org/wp/p/Plane_\%28mathematics\%29.htm
- http://www.netcomuk.co.uk/~jenolive/vect
- http://en.wikiversity.org/wiki/Vectors

Category:ROOT
Joomla SEF URLs by Artio

