UNIT CIRCLE

Created: Monday, 19 September 2011 08:37 |Published: Monday, 19 September 2011 08:37| Written by Super User | Print

Unit Circle Introduction

The unit circle is the circle with center $(0,0)$ and radius 1 unit. Consider a circle with center $\mathrm{O}(0,0)$ and radius 1 unit.

Using distance formula, we know that:

$$
\begin{aligned}
O P & =\sqrt{(x-0)^{2}+(y-0)^{2}} \\
& =\sqrt{x^{2}+y^{2}} \\
x^{2}+ & y^{2}=1
\end{aligned}
$$

Hence, the equation of the unit circle is given by:
$x^{2}+y^{2}=1$

Trigonometric Functions

Consider a unit circle with center at origin of the coordinate axes. Let $P(a, b)$ be any point on the circle with angle $A O P=x$ radian, which means that length of $\operatorname{arc} \mathrm{AP}=\mathrm{x}$

We define $\operatorname{Cos}(x)=a$ and $\operatorname{Sin}(x)=b$

Since ?OMP is a right triangle, we have
$\mathrm{OM}^{2}+\mathrm{MP}^{2}=\mathrm{OP}^{2}$
$a^{2}+b^{2}=1$ or $\operatorname{Cos}^{2} x+\operatorname{Sin}^{2} x=1$
Since one complete revolution subtends an angle of 2 ? radian at the center of the circle, ? $\mathrm{AOB}=? / 2, ? \mathrm{AOC}=$? and $? \mathrm{AOD}=$ $3 ? / 2$. All angles which are multiples of $? / 2$ are called quadrantal angles. The coordinates of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are respectively $(1,0),(0,1)(-1,0)$ and $(0,-1)$. Therefore, for quadrantal angles, we have

$\operatorname{Cos}(0)=1$
$\operatorname{Sin}(0)=0$
$\operatorname{Cos}(? / 2)=0$
$\operatorname{Sin}(? / 2)=1$
$\operatorname{Cos}(?)=-1$
$\operatorname{Sin}(?)=0$
$\operatorname{Cos}(3 ? / 2)=0$
$\operatorname{Sin}(3 ? / 2)=-1$
$\operatorname{Cos}(2 ?)=1$
$\operatorname{Sin}(2 ?)=0$
Now, if we take one complete revolution from the point P, we again come back to same point P. Thus, we also observe that if x increases (decreases) by any integral multiple of 2?, the values of sine and cosine functions do not change. So we can say that Sin $(2 \mathrm{n} ?+\mathrm{x})=\operatorname{Sin}(\mathrm{x}), \mathrm{n} ? \mathrm{Z}$ and $\operatorname{Cos}(2 \mathrm{n} ?+\mathrm{x})=\operatorname{Cos}(\mathrm{x}), \mathrm{n} ? \mathrm{Z}$

Also $\operatorname{Sin}(x)=0$ implies $x=n$?, where n is any integer.
$\operatorname{Cos}(\mathrm{x})=0$ implies $\mathrm{x}=(2 \mathrm{n}+1) ? / 2$, where n is any integer.

Example: Find the value of $\operatorname{Sin}(31 ? / 3)$
Solution: $\operatorname{Sin}(31 ? / 3)=\left(\begin{array}{l}\operatorname{Sin} \frac{10 \pi}{3}+\pi \\ \end{array}\right)$

$$
\begin{aligned}
& =\operatorname{Sin}(? / 3) \\
& =? 3 / 2
\end{aligned}
$$

Sign of trigonometric functions

Let $P(a, b)$ be a point of the unit circle with center at the origin such that \quad AOP $=x$. If ? $A O Q=-x$, then the coordinates of the point Q will be (a, -b).

Therefore, $\operatorname{Cos}(-x)=\operatorname{Cos}(x)$ and
$\operatorname{Sin}(-x)=-\operatorname{Sin}(x)$

Since for every point $\mathrm{P}(\mathrm{a}, \mathrm{b})$ on the unit circle, $-1 ? \mathrm{a} ? 1$ and $-1 ? \mathrm{~b}$? 1 , we have $-1 ? \operatorname{Cos}(\mathrm{x}) ? 1$ and $-1 ? \operatorname{Sin}(\mathrm{x}) ? 1$ for all x .

The sign of different trigonometric functions is given below:

	I	II	III	IV
$\operatorname{Sin}(x)$	+	+	-	-
$\operatorname{Cos}(x)$	+	-	-	+
$\operatorname{Tan}(x)$	+	-	+	-
$\operatorname{Cosec}(x)$	+	+	-	-
$\operatorname{Sec}(x)$	+	-	-	+
$\operatorname{Cot}(x)$	+	-	+	-

To make the calculations using signs of different trigonometric functions easy memorize the quotation "All Silver Tea Cups" which means that 'All' trigonometric functions are positive in $1^{\text {st }}$ quadrant, 'S' of silver shows that sine and cosecant are positive in 2nd quadrant, ' T ' of tea shows that tangent and cot are positive in 3rd quadrant and ' C ' of cups shows that cosine and sec are
positive in 4th quadrant.

Now try it yourself! Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links:

- http://en.wikipedia.org/wiki/Unit_circle
- http://en.wikipedia.org/wiki/Radian
- http://en.wikipedia.org/wiki/Degree_(angle)
- http://en.wikipedia.org/wiki/Trigonometric_functions

Category:ROOT
Joomla SEF URLs by Artio

