DERIVATIVES OF POLAR AND VECTOR FUNCTION

Created: Tuesday, 08 November 2011 11:53|Published: Tuesday, 08 November 2011 11:53| Written by Super User | Print

Differentiation of Vectors

If a vector R varies continuously as a scalar variable t changes, then R is said to be a function of t and is written as $R=F(t)$. Just as in scalar calculus, we define derivative of a vector function $R=F(t)$ as
$\operatorname{Lim} F(t+\delta t)-F(t)$
$\overline{\delta t} \begin{array}{lll} & 0 & \delta t\end{array}$ and write it as $\mathrm{dR} / \mathrm{dt}$ or $\mathrm{dF} / \mathrm{dt}$ or $\mathrm{F}^{\prime}(\mathrm{t})$.

General rules of differentiation are similar to those of ordinary calculus provided the order of factors in vector products is maintained. Thus, if ?, F, G, H are scalar and vector functions of a scalar variable t, we have

$$
\text { i) } \frac{\mathrm{d}}{\mathrm{dt}}[\mathrm{~F}+\mathrm{G}-\mathrm{H}]=\frac{\mathrm{df}}{\mathrm{dt}}+\frac{\mathrm{dG}}{\mathrm{dt}}-\frac{\mathrm{dH}}{\mathrm{dt}}
$$

ii) $d[F \Phi]=F d \Phi+\Phi d F$
dt $\quad \overline{d t} \quad \overline{d t}$
$\frac{\text { iii) }}{\frac{d}{d t}}[F . G]=\frac{F . d G}{d t}+\frac{d F}{d t}$
i.
iv) $d(F \times G)=\underset{d t}{F d G}+d F \times G$

ii.

If $F(t)$ has constant (fixed) direction, then $F \times d F=0$
Dt

Example: If $A=5 t^{2} I+t J-t^{3} K, B=\sin t I-\cos (t) J$ then
Find i) d/dt(A.B)
ii) $d / d t(A x B)$

Solution: i) $\mathrm{d} / \mathrm{dt}(\mathrm{A} \cdot \mathrm{B})=\mathrm{A} \cdot(\mathrm{dB} / \mathrm{dt})+(\mathrm{dA} / \mathrm{dt}) \cdot \mathrm{B}$

$$
\begin{aligned}
& =\left(5 \mathrm{t}^{2} \mathrm{I}+\mathrm{tJ}-\mathrm{t}^{3} \mathrm{~K}\right)[\operatorname{costI}-(-\sin \mathrm{t}) \mathrm{J}]+\left(10 \mathrm{tI}+\mathrm{J}-3 \mathrm{t}^{2} \mathrm{~K}\right)(\sin \mathrm{I}-\cos \mathrm{J}) \\
& =\left(5 \mathrm{t}^{2} \cos -\mathrm{t} \sin \mathrm{t}\right)+(10 \mathrm{tsint}-\cos \mathrm{t}) \\
& =5 \mathrm{t}^{2} \cos (\mathrm{t})+11 \mathrm{tsin}(\mathrm{t})-\cos (\mathrm{t}) .
\end{aligned}
$$

ii) $\mathrm{d} / \mathrm{dt}(\mathrm{AXB})=\mathrm{Ax}(\mathrm{dB} / \mathrm{dt})+(\mathrm{dA} / \mathrm{dt}) \mathrm{xB}$

$$
\begin{aligned}
& =\left(5 \mathrm{t}^{2} \mathrm{I}+\mathrm{tJ}-\mathrm{t}^{3} \mathrm{~K}\right) \mathrm{x}(\cos \mathrm{II}+\sin \mathrm{J})+\left(10 \mathrm{tI}+\mathrm{J}-3 \mathrm{t}^{2} \mathrm{~K}\right) \mathrm{x}(\sin \mathrm{I}-\cos \mathrm{J}) \\
& =\left(\mathrm{t}^{3} \sin t-3 \mathrm{t}^{2} \cos \mathrm{t}\right) \mathrm{I}-\mathrm{t}^{2}(\mathrm{t} \cos \mathrm{t}+3 \sin \mathrm{t}) \mathrm{J}+\left[\left(5 \mathrm{t}^{2}-1\right) \sin \mathrm{t}-11 \mathrm{tcos} \mathrm{t}\right] \mathrm{K}
\end{aligned}
$$

Derivative of Polar Functions

```
Let \(r=r(?)\) represent a polar curve, then
    \(\mathrm{dy}=\mathrm{dy} / \mathrm{d} ?=\mathrm{r}\) 'sin\(?+\mathrm{rcos} ?\)
        dx dx/d? r'cos? - rsin?
```

Since $x=r \cos$?
$\mathrm{dx} / \mathrm{d} ?=\mathrm{r}(-\sin ?)+\cos ? . \mathrm{r}^{\prime}=\mathrm{r}^{\prime} \cos ?-\mathrm{r} \sin ?$
$y=r \sin$?
$\mathrm{dy} / \mathrm{d} ?=\mathrm{rcos} ?+\sin ? . \mathrm{r}^{\prime}=\mathrm{r}$ 'sin$?+\mathrm{rcos} ?$
$\mathrm{dy}=\mathrm{dy} / \mathrm{d} ?=\mathrm{r}$ 'sin $?+\mathrm{rcos}$?
dx dx/d? r'cos? - rsin?
Example: Find the derivative of $r=? \cos$?
Example: $\mathrm{dy} / \mathrm{dx}=[?(-\sin ?)+\cos ?] \sin ?+? \cos ?(\cos ?)$

$$
\begin{aligned}
& {[?(-\sin ?)+\cos ?] \cos ?-? \cos ? \sin ? } \\
= & -? \sin 2 ?+\cos ? \sin ?+? \cos 2 ?
\end{aligned}
$$

$$
-? \sin ? \cos ?+\cos 2 ?-? \cos ? \sin ?
$$

$$
=\cos ? \sin ?+?(\cos 2 ?-\sin 2 ?)
$$

$$
\begin{aligned}
& \cos 2 ?-2 ? \cos ? \sin ? \\
= & \cos ? \sin ?+? \cos 2 ?
\end{aligned}
$$

$$
\cos 2 ?-2 ? \cos ? \sin ?
$$

Example: Find the slope of the tangent line to the unit circle $\mathrm{x}=\operatorname{cost}, \mathrm{y}=\operatorname{sint}(0 ? \mathrm{t} ? 2$?) at the point $\mathrm{t}=? / 6$
Solution: The slope at a general point on the circle is $d y / d x$
$\mathrm{dy} / \mathrm{dx}=\mathrm{dy} / \mathrm{dt}=\cos \mathrm{t}=-\cot \mathrm{t}$

$$
\mathrm{dx} / \mathrm{dt}-\sin t
$$

Thus, the slope at $t=? / 6$ is
$\mathrm{dy} / \mathrm{dx}] \mathrm{t}=? / 6=-\cot ? / 6=-? 3$
Example: Find the slope of the tangent line to the circle $r=4 \cos ?$ at the point where $?=? / 4$

$$
\mathrm{dy} / \mathrm{dx}=\stackrel{4 \cos 2 \theta}{1}-4 \sin 2 \theta=4 \cos 2 \theta=-\cot 2 \theta
$$

Solution: $\quad-8 \sin \theta \cos \theta \quad-4 \sin 2 \theta$
Thus, at the point where $?=? / 4$ the slope of the tangent line is $d y / d x] ?=? / 4=-\cot ? / 2=0$ which implies that the circle has a horizontal tangent line at the point where ? = ?/4

Now try it yourself! Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference links:

- http://en.wikipedia.org/wiki/Derivative
- http://en.wikipedia.org/wiki/Polar_curve
- http://en.wikipedia.org/wiki/Slope

Category:ROOT
Joomla SEF URLs by Artio

