DIFFERENTIATION

Created: Thursday, 10 November 2011 06:58 | Published: Thursday, 10 November 2011 06:58 | Written by Super User | Print

Introduction

Let ' f ' be a given function, then the derivative of ' f ' is denoted by f '(x) and is defined as, $f^{\prime}(x)=\lim \frac{f(x+h)-f(x)}{h} \frac{h}{h}$

The process of finding derivative is called differentiation.
The derivative of a function can be denoted is different ways, they are $y^{\prime}, \mathrm{y} 1, \mathrm{dy} / \mathrm{dx}$ etc.
The derivative of a function at ' c ' is denoted as f^{\prime} ' (c) and is defined as
$f^{\prime}(c)=\lim f(c+h)-f(c)$
$h-0 \quad h$

The process of finding the derivative using definition is called the first principle of differentiation

Example: Using $1^{\text {st }}$ principle of differentiation, find the derivative of $(x+2)^{2}$
Let $\mathrm{f}(\mathrm{x})=(\mathrm{x}+2)^{2}, \mathrm{f}(\mathrm{x}+\mathrm{h})=(\mathrm{x}+\mathrm{h}+2)^{2}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h-0} \frac{(x+h+2)^{2}-(x+2)^{2}}{h}
\end{aligned}
$$

$$
=\lim x^{2}+h^{2}+4+2 x h+4 h+4 x-x^{2}-4 x-4
$$

$$
\mathrm{h}-0
$$

h

$$
\begin{aligned}
& =\lim \frac{h^{2}+2 x h+4 h}{h} \\
f^{\prime}(x) & h-0 \\
& =\lim h+2 x+4
\end{aligned}
$$

$h-0$

$$
\begin{aligned}
& =0+2 x+4 \\
& =2(x+2)
\end{aligned}
$$

List of derivatives of certain standard functions

S. No.	$f(x)$	$f^{\prime}(x)$
1	x^{n}	$n x^{n-1}$
2	$\operatorname{Sin} x$	$\operatorname{Cos} x$
3	$\operatorname{Cos} x$	$-\operatorname{Sin} x$
4	$\operatorname{Tan} x$	$\operatorname{Sec} 2 x$
5	$\operatorname{Cot} x$	$-\operatorname{Cosec} 2 x$
6	$\operatorname{Sec} x$	$\operatorname{Sec} x \operatorname{Tan} x$
7	$\operatorname{Cosec} x$	$-\operatorname{Cosec} x \operatorname{Cot} x$
8	$\log x$	$1 / x$
9	$a \operatorname{constant}$	Zero
10	e^{x}	e^{x}
11	a^{x}	$a^{x} \log a$
12	\sqrt{x}	$1 /(2 \sqrt{x})$

Product Rule of Differentiation

If ' u ' and ' v ' are functions of ' x ' then
$\frac{d(u v)}{d x}=\frac{u d v}{d x}+v \frac{d u}{d x}$
Derivative of product of two functions is "(first function) x (derivative of second) + (second function) x (derivative of first)" If u, v and w are functions of ' x ' then
$\frac{d}{d x}$ (uvw) $=u v \frac{d w}{d x}+u w \frac{d v}{d x}+v w \frac{d u}{d x}$

Quotient Rule of Differentiation

If ' u ' and ' v ' are functions of ' x ' and v ?0, then quotient rule is

$$
\begin{aligned}
d x\binom{u}{d} & =\frac{v\left(\frac{d u}{d x}\right)-\left(\frac{d v}{d x}\right)}{v^{2}} \\
& =\frac{v u^{\prime}-u v^{\prime}}{v^{2}}
\end{aligned}
$$

Important Notes:
(i) $(\mathrm{u} \pm \mathrm{v})^{\prime}=\mathrm{u}^{\prime} \pm \mathrm{v}^{\prime}$
(ii) If a function ' f ' is differentiable at a point ' c ' then it is continuous at that point.
(iii) Every differentiable function is continuous.

Chain Rule of Differentiation

Chain Rule is applicable only for the composition of functions. Let ' y ' be a composition of two functions ' f ' and ' g '.

$$
\mathrm{y}=\mathrm{f} o \mathrm{~g}=\mathrm{f}[\mathrm{~g}(\mathrm{x})]
$$

Take $y=f(u)$ where $u=g(x)$ so that we can find
dy/du and du/dx [Since ' y ' is a function of ' u ' we get dy/du and ' u ' is a function of ' x ' we get du/dx]

$$
\text { Hence } \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

If ' y ' is the composition of three functions ' f ', ' g ' and ' u ' then

$$
\begin{aligned}
\mathrm{y} & =\mathrm{fog} \mathrm{ou} \\
& =\mathrm{f}\{\mathrm{~g}[\mathrm{u}(\mathrm{x})]\}
\end{aligned}
$$

Take $v=u(x), t=g(v)$ and $y=f(t)$
Find $d v / d x, d t / d v$ and $d y / d t$

$$
\frac{d y}{d x}=\frac{d y}{d t} X d t \times \frac{d v}{d x}
$$

Example: Find the derivative of $\operatorname{Cos}(3 x+5)$
Solution: Let $y=\operatorname{Cos}(3 x+5)$
Take $\mathrm{y}=\operatorname{Cos}(\mathrm{u})$ where $\mathrm{u}=3 \mathrm{x}+5$
$\frac{d y}{d u}=-\operatorname{Sin}(u)$ and $\frac{d u}{d x}=3$
$\frac{d y}{d x}=\left(\frac{d y}{d u}\right)^{x}\left(\frac{d u}{d x}=-3 \sin (u)\right.$
$d y=-3 \operatorname{Sin}(3 x+5) \quad[u=3 x+5]$
dx

Now try it yourself! Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring :

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links :

- http://en.wikipedia.org/wiki/Derivative http://en.wikipedia.org/wiki/Quotient_rule
- http://en.wikipedia.org/wiki/Chain_rule http://en.wikipedia.org/wiki/Function_\(mathematics\)
- http://en.wikipedia.org/wiki/Function_composition

Category:ROOT
Joomla SEF URLs by Artio

