INCREASING AND DECREASING FUNCTIONS

Created: Monday, 14 November 2011 07:10| Published: Monday, 14 November 2011 07:10| Written by Super User | Print

Conditions for Increasing and Decreasing functions

Let I be an open interval contained in the domain of a real valued function ' f '. Then ' f ' is said to be
(i) Increasing on I if $\mathrm{x}_{1}<\mathrm{x} 2$ in $\mathrm{I} \longrightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)$? $\mathrm{f}\left(\mathrm{x}_{2}\right)$ for all x 1 , x 2 ? I
(ii) Strictly increasing on I if $\mathrm{x}_{1}<\mathrm{x} 2$ in $\mathrm{C} \quad \mathrm{f}(\mathrm{x} 1)<\mathrm{f}(\mathrm{x} 2)$ for all x 1 , x 2 ? I
(iii) Decreasing on I if $\mathrm{x}_{1}<\mathrm{x}_{2}$ in $\mathrm{I} \longleftrightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)$? $\mathrm{f}\left(\mathrm{x}_{2}\right)$ for all $\mathrm{x} 1, \mathrm{x} 2$? I
(iv) Strictly decreasing on I if $\mathrm{x}_{1}<\mathrm{x}_{2}$ in $\mathrm{I} \longrightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right)$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}$? I

Dependence on Differentiability

Let ' f ' be continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on the open interval (a, b). Then f is increasing in $[\mathrm{a}, \mathrm{b}]$ if f ' $(\mathrm{x})>0$ for each x ? (a, b)
(i) f is decreasing in $[a, b]$ if $f^{\prime}(x)<0$ for each $x ?(a, b)$.
(ii) f is a constant function in $[a, b]$ if $f^{\prime}(x)=0$ for each $x ?(a, b)$.

Solved Examples:

1) Show that the function given by $f(x)=5 x+19$ is strictly increasing on \mathbf{R}
$\mathrm{F}(\mathrm{x})=5 \mathrm{x}+19$
$\mathrm{F}^{\prime}(\mathrm{x})=5>0$ for all x ? \mathbf{R}
Thus $f(x)$ is strictly increasing on \mathbf{R}
2) Find the intervals in which the function f given by $f(x)=x^{2}-4 x+6$ is
a) Strictly increasing
b) Strictly decreasing
$F(x)=x^{2}-4 x+6$
$\mathrm{F}^{\prime}(\mathrm{x})=2 \mathrm{x}-4 \quad-? \quad 2 \quad+$?
$F^{\prime}(x)=0$ implies $2 x-4=0, x=2$
In the interval $(-?, 2), \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-4<0$, so it is strictly decreasing in this interval.
In the interval $(2, ?), \mathrm{f}^{\prime}(\mathrm{x})>0$, so it is strictly increasing in this interval

Example: Where the given function is increasing or decreasing:
$f(x)=x^{3}-4 x$, for x in the interval $[-1,2]$
Solution:

Starting from -1 (the beginning of the interval $[-1,2]$):
At $x=-1$ the function is decreasing, it continues to decrease until about 1.2, it then increases from there, past $x=2$ Within the interval [-1, 2]:
The curve decreases in the interval [-1, approximately 1.2]
The curve increases in the interval [approximately 1.2, 2]

Now try it yourself! Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links:

- http://en.wikipedia.org/wiki/Interval_(mathematics)
- http://en.wikipedia.org/wiki/Domain_(ring_theory)
- http://en.wikipedia.org/wiki/Continuous_function
- http://www.opensourcemath.org/books/calc1-sage/html/Increasing_decreasing_funct.html

Category:ROOT
Joomla SEF URLs by Artio

