INDEFINITE INTEGRALS - II

Created: Monday, 14 November 2011 10:40 | Published: Monday, 14 November 2011 10:40 | Written by Super User | Print

Integration by Substitution

$$\int f(x)\,dx.$$

Here the given integral ?f(x) dx can be transformed into another form by changing the <u>independent variable</u> 'x' to 't' by substituting x=g(t).

Consider I = ?f(x) dx

Put x=g(t) so that dx/dt = g'(t)

We can write dx = g'(t)dt

Hence
$$I = ?f(x) dx = ?f[g(t)] g'(t)dt$$

This change of variable formula is one of the important tools available to us in the name of <u>integration by substitution</u>. Usually, we make a substitution for a function whose derivative also occurs in the integrand.

We can have a glance at few examples.

$$\int tanx \, dx = \int sinx \, dx$$

$$Cosx$$

$$Put cosx = t, so that -sinxdx = dt$$

$$\int tanx \, dx = \int -dt$$

$$= -\log|t| + C$$

$$= -\log|cosx| + C$$

$$= \log|cosx|^{-1} + C$$

$$= \log|1/cosx| + C$$

$$= \log|secx| + C$$

Hence $2\tan x \, dx = \log|\sec x| + C$

Similarly we can find the integral of cotx also

?cotx dx = log|sinx| + C
$$\int (\log x)^2 dx$$
ii)

Here we know the derivative of logx is 1/x, so put $\log x = t$

$$\log x = t$$

$$1/x dx = dt$$

$$\int (\log x)^2 dx$$

$$= ?t dt$$

$$= t^3/3 + C$$

$$= (\log x)^3$$

Using substitution technique, we can find the following standard integrals.

- i) $2\tan x dx = \log|\sec x| + C$
- ii) $2\cot x dx = \log |\sin x| + C$
- iii) $\operatorname{?secx} dx = \log |\operatorname{secx} + \operatorname{tanx}| + C$
- iv) $\operatorname{?cosecx} dx = \log |\operatorname{cosecx} \operatorname{cotx}| + C$

Integration using trigonometric identities

When the integrand involves some trigonometric functions, we use some well known identities to find the integrals.

Most commonly used trigonometric identities are,

- $\cos^2 x = [1 + \cos 2x]/2$
- $\sin^2 x = [1 \cos 2x]/2$
- $2\cos x \cos y = \cos(x+y) + \cos(x-y)$
- $2\sin x \sin y = \cos(x-y) \cos(x+y)$
- $2\sin x \cos y = \sin(x+y) + \sin(x-y)$
- $2\cos x \sin y = \sin(x+y) \sin(x-y)$
- $\sin^3 x = [3\sin x \sin 3x]/4$
- $\cos^3 x = [3\cos x + \cos 3x]/4$

Integrals of special form

$$\int px+q \, dx \quad and \int px+q \, dx$$

$$\xrightarrow{m} \quad ax^2+bx+c \quad \sqrt{ax^2+bx+c}$$

While integrating functions of the form

where p, q, a, b and c are constants we have to use another method.

Assume that
$$px+q = A$$
 $d(ax^2+bx+c) + B = A(2ax+b) + B$

Which means that Numerator = A derivative $(ax^2+bx+c) + B$

To determine A and B, we equate from both sides the coefficients of 'x' and constant terms. After getting the values of A and B we can reduce the integral to one of the known forms.

Integration by Parts

Integration by Parts is applicable only for the functions which are expressed as product of functions.

If 'u' and 'v' are any two differentiable functions of a single variable 'x', then

$$?uv dx = u?vdx - ?[u'?vdx] dx$$

$$OR$$

f(x) g(x)dx = f(x) g(x)dx - f(x)g(x)dx - f(x)g(x)dx

This formula can stated as follows: "The integral of the product of two functions = (first function) x (integral of the second function) – Integral of [(derivative of first function) x (integral of the second function)]".

Example: Find ?x sin3x dx

Solution: $2x \sin 3x dx = x \sin 3x dx - 2[d(x) \sin 3x dx] dx$

Note: While performing Integration by Parts we have memorize "ILATE" which gives the order in which the functions are to be taken. Inverse and <u>logarithmic functions</u> must be taken as first function since they doesn't have integrals.

I = Inverse function

L = Logarithmic function

A = Algebraic Function

T = Trigonometric function

E = Exponential function

Integrals of the type $?e^{X}[f(x) + f'(x)] dx$

We have
$$I=?e^{x} [f(x) + f'(x)]dx$$

 $= ?e^{x} f(x)dx + ?e^{x} f'(x)dx$
 $= I1 + ?e^{x} f'(x) dx$ where $I1=?e^{x} f(x) dx$ (1)
 $I1 = ?e^{x} f(x) dx$
 $= ?f(x) e^{x} dx$ [Take $f(x)$ as 1st function]
 $= f(x) e^{x} - ?f'(x) e^{x} dx$
 $= f(x) e^{x} - ?f'(x) e^{x} dx + C$
(1) becomes, $I = e^{x} f(x) - ?f'(x) dx + ?f'(x) dx + C$
 $= e^{x} f(x) + C$
Hence $?e^{x} [f(x) + f'(x)] dx = e^{x} f(x) + C$
Example: Find $?e^{x} [\sin x + \cos x] dx$
Solution: $?e^{x} [\sin x + \cos x] dx = e^{x} \sin x + C$ [If $f(x) = \sin x$ then $f'(x) = \cos x$]

Integrals of some more types

Here we discuss some special types of standard integrals based on the technique of integration by parts:

i)
$$\int \sqrt{x^2-a^2} dx = x\sqrt{x^2-a^2} - \frac{a^2 \log |x+\sqrt{x^2-a^2}| + C}{2}$$

ii)
$$\int \sqrt{x^2 + a^2} dx = x \sqrt{x^2 + a^2} + a^2 \log |x + \sqrt{x^2 + a^2}| + C$$

iii)
$$\int \sqrt{a^2-x^2} dx = x \sqrt{a^2-x^2} + a^2 \sin^{-1} \left(\frac{x}{a}\right) + C$$

Now try it yourself! Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring:

<u>eAgeTutor.com</u> is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

<u>Contact us</u> today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links:

- http://en.wikipedia.org/wiki/Integration_by_parts http://www.analyzemath.com/logfunction/logfunction.html
- http://en.wikipedia.org/wiki/Integration_by_substitution
- http://en.wikipedia.org/wiki/List_of_trigonometric_identities
 http://en.wikipedia.org/wiki/Dependent_and_independent_variables

Category:ROOT

Joomla SEF URLs by Artio