MAXIMA AND MINIMA (2nd DERIVATIVE TEST)

Created: Thursday, 17 November 2011 08:39 | Published: Thursday, 17 November 2011 08:39| Written by Super User | Print

Second derivative test

Image not readable or empty
maximationdminima2hdiderivative testhtive\%20test1.gif
Let ' f ' be a function defined on an interval I and c ? I. Let ' f ' be twice differentiable at ' c '. Then

- $x=c$ is a point of local maxima if f ' $(c)=0$ and f ' (c) <0. The value $f(c)$ is local maximum value of ' f '.
- $x=c$ is a point of local minima if $f^{\prime}(c)=0$ and f '(c) >0. The value $f(c)$ is local minimum value of ' f '.
- The test fails, if $f^{\prime}(c)=0$ and $f^{\prime}(c)=0$. In this case, we have to go for1st derivative test and find whether ' c ' is a point of local maxima, local minima or a point of inflection.

Let's understand the concept with the help of following example:
Find the local maximum and local minimum of the function:
$f(x)=3 x^{4}-4 x^{3}-12 x^{2}+12$
We have $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+12$
$f^{\prime}(x)=12 x^{3}-12 x^{2}-24 x$
$\mathrm{f}^{\prime}(\mathrm{x})=12 \mathrm{x}(\mathrm{x}-1)(\mathrm{x}+2)$
$\mathrm{f}^{\prime}(\mathrm{x})=36 \mathrm{x}^{2}+24 \mathrm{x}-24=12\left(3 \mathrm{x}^{2}+2 \mathrm{x}-1\right)$
$f^{\prime \prime}(0)=-12<0$
$\mathrm{f}^{\prime \prime}(1)=48>0$
$\mathrm{f}^{\prime \prime}(-2)=84>0$
Hence bysecond derivative test, $x=0$ is a point of local maxima and local maximum value is $f(0)=12$, while $x=1$ and $x=-2$ are the points of local minima and local minimum values of ' f ' are 7 and -20 respectively.

Maximum and minimum values of a function in a closed interval

Let f be a continuous function of an interval $\mathrm{I}=[\mathrm{a}, \mathrm{b}]$. The f has absolute minimum value and absolute maximum value in I .

Working Rule:

Step I: Find all critical points of ' f ' in the interval
Step II: Take the end points of the interval
Step III: At all these points calculate the values of ' f '
Step IV: Identify the maximum and minimum values of ' f ' out of the values calculated in Step 3. The maximum will be the absolute maximum value of f and the minimum value will be the absolute minimum value of f.
Let's understand the concept with the help of following example:
Find the absolute maximum and minimum values of a function f given by $f(x)=2 x^{3}-15 x^{2}+36 x+1$ on the interval [1,5]
Given $f(x)=2 x^{3}-15 x^{2}+36 x+1$
$f^{\prime}(x)=6 x^{2}-30 x+36$
$=6(x-3)(x-2)$
$f^{\prime}(x)=0$ gives $x=2,3$
$f(1)=24$
$\mathrm{f}(2)=29$
$\mathrm{f}(3)=28$
$f(5)=56$
Hence absolute maximum value of f is 56 at $\mathrm{x}=5$ and absolute minimum value of f is 24 at $\mathrm{x}=1$.

Now try it yourself! Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links:

- http://en.wikipedia.org/wiki/Second derivative_test
- http://en.wikipedia.org/wiki/Differentiable function
- http://mathworld.wolfram.com/LocalMaximum.html
- http://mathworld.wolfram.com/LocalMinimum.html
- http://en.wikipedia.org/wiki/First derivative_test
- http://en.wikipedia.org/wiki/Second_derivative_test

Category:ROOT
Joomla SEF URLs by Artio

