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Introduction

We have already learned to find the area of a plane region bounded by two curves which is obtained by integrating the length of a 
general cross section over an appropriate interval.  Here we will see that the same basic principle can be used to find volumes of 
certain three dimensional solids.

Let S be a solid that extends along the x-axis and is bounded on the left and right, respectively, by the planes that are perpendicular 
to the x-axis at x=a and x=b.  We are finding the volume V of the solid, assuming that its cross-sectional area A(x) is known at 
each x in the interval [a, b].
To solve this problem we divide the interval [a, b] into n subintervals, which has the effect of dividing the solid into n slabs [fig 
(ii)]

If we assume that the width of the kth slab is ?xk, then the volume of the slab can be approximated by the volume of a right 
cylinder of width (height) ?xk and cross-sectional area A(xk*), where xk* is a number in the kth subinterval.  Adding these 
approximations yields the following Riemann sum that approximates the volume V:

                                   V ? ?A(xk*)?xk
Taking the limit as n increases and the widths of the subintervals approach zero yields the definite integral

I.     V     =     lim     ?A(xk*)?xk     =     a?
b
 A(x)dx

                   max?xk   0

We can conclude the result in the following way,

Volume formula
Let S be a solid bounded by two parallel planes perpendicular to the x-axis at x=a and x=b.  If, for each x in [a, b] the cross-
sectional area of S perpendicular to the x-axis is A(x), then the volume of the solid is,

                               V= a?
b
 A(x) dx provided A(x) is integrable.

Volume Formula
Let S be a solid bounded by two parallel planes perpendicular to the y-axis at y=c and y=d.  If, for each y in [c, d], the 
cross-sectional area of S perpendicular to the y-axis is A(y), then the volume of the solid is,

                              V = c?
d
 A(y) dy provided A(y) is integrable.

In words, these formulas states that, “The volume of a solid can be obtained by integrating the cross-sectional area from 

https://www.flipkart.com/spoken-english-3rd/p/itmezunpyjy5xcc7?pid=9789339221461&affid=kaminiraw
https://english.eagetutor.com/contact
http://www.intmath.com/applications-integration/2-area-under-curve.php
http://www.cliffsnotes.com/study_guide/Volumes-of-Solids-with-Known-Cross-Sections.topicArticleId-39909,articleId-39906.html
http://en.wikipedia.org/wiki/Riemann_sum


one end of the solid to the other”.
Example: Find the formula for the volume of a right pyramid whose altitude is h and whose base is a square with sides of 
length a.
Solution: We introduce a rectangular coordinate system in which the y-axis passes through apex and is perpendicular to the 
base, and the x-axis passes through the base and is parallel to a side of the base.
At any ‘y’ in the interval [0, h] on the y-axis, the cross section perpendicular to the y-axis is a square.  If ‘s’ denotes the 
length of a side of this square, then by similar triangles.

Solids of revolution

Asolid of revolution is a solid that is generated by revolving a plane region about a line that lies in the same plane as the region; 
the line is called the axis of revolution.

Volume of a solid of revolution

Let f be continuous and non-negative on [a, b] and let R be the region that is bounded by y=f(x), below by the x-axis, and on the 
sides by the lines x=a and x=b, then the volume of the solid or revolution that is generated by revolving the region R about the x-
axis is given by

                                    V= a?
b
 ?[f(x)]

2
dx

                                      = a?
b
 ? y

2
 dx

                                       = ? a?by2 dx                              
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Example: Find the volume of a paraboloid of revolution formed by revolving the parabola y
2
=8x about the x-axis from x=0 to x=6

Solution: The equation of the parabola is y
2
=8x,

Hence volume = 0?
6
 ?y

2
dx

                     = ?0?
6
 8x dx

                     = 8?[x
2
/2]0

6

                     = 8? x ½ [6
2
-0

2
]

                     =4?x36
                     = 144?cubic units.

Volume by cylindrical shells

A cylindrical shell is a solid enclosed by two concentric right circular cylinders.  The volume V of a cylindrical shell with inner 
radius r1, outer radius r2, and height h can be written as

                         V = (area of cross section).height
Let f be continuous and non-negative on [a, b] and let R be the region that is bounded above by y=f(x) below by the x-axis, and on 
the sides by the lines x=a and x=b.  Then the volume V of the solid revolution that is generated by revolving the region R about 
the y-axis is given by
                       V =a?b 2?xf(x)dx

A.

                          

   
Example: Use cylindrical shells to find the volume of the solid generated when the region R in the first quadrant enclosed 
between y=x and y=x

2
 is revolved about the y-axis.

Solution: V= 0?
1
2?x(x-x

2
)dx = 2? 0?

1
 (x

2
-x

3
)dx

                                 = 2? [(1/3) – (1/4)]
                                 = ?/6 cubic units.

Now try it yourself!  Should you still need any help, click here to schedule live online session with e Tutor!
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