Modulus and the Conjugate of a Complex Number

Created: Tuesday, 22 November 2011 12:05 | Published: Tuesday, 22 November 2011 12:05 | Written by Super User | Print

Introduction



The <u>modulus</u> of a complex number denotes its magnitude and <u>conjugate</u> of a complex number is obtained by changing the sign of imaginary part of a complex number. If the imaginary part is positive we make it negative and if it is negative, we make it positive. The sign of real part doesn't change.

Let z=a + ib be a complex number, then the modulus of 'z' is denoted by |z| and is defined as $|z| = ?a^2 + b^2$ For example: 1) $|5-i| = ?5^2 + (-1)^2$

$$= ?25 + 1$$

= ?26
2) |-3+4i| = ?(-3)2 + 42
= ?9+16
= ?25
= 5

The conjugate of a complex number z=a + ib is denoted by z and is defined as z = a-ibClearly we can observe that $z\overline{z} = |z|^2$

Let
$$z = a + ib$$
 then $\overline{z} = a - ib$
 $z\overline{z} = (a + ib)(a - ib)$
 $= a^2 - i^2b^2$
 $= a^2 + b^2$ [i²=-1]
 $= [\sqrt{a^2 + b^2}]^2$
 $= |z|^2$

Properties of Modulus and conjugate of complex numbers

For any two complex numbers z1 and z2, we have i) $|z_1 z_2| = |z_1| |z_2|$

ii) $\begin{vmatrix} z_1 \\ z_2 \end{vmatrix} = \begin{vmatrix} z_1 \\ |z_2 \end{vmatrix}$ provided $|z_1| \neq 0$ iii) $\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$ iv) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

Square Root of a negative real number

We know $i^2 = -1$ and $(-i)^2 = i^2 = -1$

Hence the square roots of -1 are i, -i but the symbol ?-1 mean 'i' only.

Now we can see that i and -i both are the solutions of the equation $x^2+1=0$

Similarly,
$$(?5i)^2 = 5i^2 = 5 \times -1 = -5$$

 $(-?5i)^2 = 5i^2 = 5 \times -1 = -5$

Generally, if 'a' is a positive real number, ?-a = ?a ?-1 = ?a i

We have already learned that $a \times b = ab$ for all positive real numbers 'a' and 'b'

We can examine this result for i2,

 $i^2 = i x i = ?-1 x ?-1 = ?-1 x -1 = ?1 = 1$, which is a contradiction to the fact that $i^2 = -1$ Hence ?a x ?b ? ?ab if both 'a' and 'b' are negative real numbers If 'a' and 'b' are zero, then $a \times b = ab = 0$

Powers of 'i'

We know that $i^2 = -1$, different <u>powers</u> of 'i' are given below $i^3 = i^2 x i = -1 x i = -i$ $i^4 = (i^2)^2 = (-1)^2 = 1$ $i^5 = i^4 x i = 1 x i = i$ $i^6 = i^5 x i = i x i = i^2 = -1$ and so on. $i^{-1} = 1 = 1 = 1$ i = -i i = -1 $i^{-2} = 1 = 1 = -1$ i² -1 $i^{-3} = \frac{1}{i} = \frac{1}{i} \times \frac{1}{i} = i = i$ $i^{3} - i = i$ $i^{-4} = \underbrace{1}_{i^4} = \underbrace{1}_{i^4} = 1$

Also we have,

In general, for any integer k, i4k=1, i4k+1=i, i4k+2=-1, i4k+3=-i

Identities in Complex numbers

For any two complex numbers z1 and z2 we have the followingidentities

- $(z_1 + z_2)^2 = z_1^2 + z_2^2 + 2z_1z_2$
- $(z_1 + z_2)^2 = (z_1 + z_2) (z_1 + z_2)$ = $z_1^2 + z_1 z_2 + z_1 z_2 + z_2^2$ = $z_1^2 + 2z_1 z_2 + z_2^2$
 - $(z_1-z_2)2 = z_1^2 2z_1z_2 + z_2^2$
 - (z1+z2)3 = z13+3z12z2+3z1z22+z23
 - $(z_1-z_2)_3 = z_13-3z_12z_2+3z_1z_2+z_23$
 - $z_{12}-z_{22}=(z_{1}+z_{2})(z_{1}-z_{2})$

Express in the form a + ib $1)i^{9}+i^{19}$

```
1) i^9 + i^{19} = i^8 i + i^{18} i
= 1 x i + -1 x i
= i + -i
= 0
= 0 + i0
```

Now try it yourself! Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring:

<u>eAgeTutor.com</u> is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

<u>Contact us</u> today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links:

- http://en.wikipedia.org/wiki/Modulus_of_complex_number
- <u>http://tvwiki.tv/wiki/Square_root</u>
- http://www.cut-the-knot.org/arithmetic/algebra/ComplexNumberIdentities.shtml
- http://www.purplemath.com/modules/complex.htm
- http://en.wikipedia.org/wiki/Complex_conjugate

Category:ROOT