ADJOINT AND INVERSE OF A MATRIX

Created: Thursday, 24 November 2011 10:06 | Published: Thursday, 24 November 2011 10:06| Written by Super User | Print

Co-factors

$A^{-1}=\frac{\operatorname{adj}(A)}{|A|}$ It is a square matrix which consists of co-factors of each element. In this case, we find the co-factors of each element and enter these values in their corresponding places.

Adjoint of a Matrix

The adjoint of a square matrix $\mathrm{A}=[$ aij $] \mathrm{nx} \mathrm{n}$ is defined as the transpose of the matrix $[\mathrm{Aij}] \mathrm{n} \times \mathrm{n}$, where Aij are the co-factor of each element aij. It is denoted by Adj A.
In general, adjoint of A is thetranspose of its co-factor matrix.

$$
\text { If } A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \text { then Adj } A=\text { Transpose of }\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

$\operatorname{Adj} A=\left(\begin{array}{lll}a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33}\end{array}\right)$

Important Results

1. If A be any given square matrix of order ' n ' then
$\mathrm{A}(\operatorname{Adj} \mathrm{A})=(\operatorname{Adj} \mathrm{A}) \mathrm{A}=1 \mathrm{AlI}$, where I is the identity matrix of order n
i) A square matrix A is said to be singular if $\mathrm{Al}=0$
ii) A square matrix A is said to be non-singular if 1 Al ? 0
iii) If A is a non-singular matrix of order n the $\operatorname{ladj} \mathrm{Al}=1 \mathrm{Aln}-1$
2. If A and B are nonsingular matrices of the same order, then $A B$ and $B A$ are also non singular matrices of the same order.
3. The determinant of the product of matrices is equal to product of their respective determinants, that is $1 \mathrm{ABl}=1 \mathrm{Al} 1 \mathrm{Bl}$, where A and B are square matrices of same order.
4. A square matrix A is invertible if and only if A is non-singular matrix.

Example: Find the adjoint of $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Solution: \quad Adj $A=\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$
Adjoint of a 2×2 matrix is obtained by interchanging the elements of principal diagonal and changing the sign of remaining elements.

Inverse of a Matrix

If A is a square matrix then its inverse is given by:
$\mathrm{A}^{-1}=\underline{\operatorname{Adj} A}$,
$\mid \mathrm{Al}$ provided A is a non-singular matrix

Important Result

If $\mathrm{A}-1$ is the inverse of A , then
i) $\mathrm{AA}-1=\mathrm{A}-1 \mathrm{~A}=\mathrm{I}$
ii) $(\mathrm{AB})-1=\mathrm{B}-1 \mathrm{~A}-1$

Example: Find the inverse of $A=\left(\begin{array}{rr}-1 & 2 \\ 0 & 6\end{array}\right)$
$1 \mathrm{Al}=-6-0=-6 ? 0$. So, inverse exists
$\operatorname{Adj} A=\left(\begin{array}{ll}6 & -2 \\ 0 & -1\end{array}\right)$
Hence $A^{-1}=-1 / 6\left(\begin{array}{ll}6 & -2 \\ 0 & -1\end{array}\right)$

Now try it yourself! Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links:

- http://en.wikipedia.org/wiki/Cofactor_(linear_algebra)\#Matrix_of_cofactors
- http://www.youtube.com/watch?v=ZMc2WJ1oi-8
- http://en.wikipedia.org/wiki/Transpose
- http://www.britannica.com/EBchecked/topic/561660/square-matrix
- http://en.wikipedia.org/wiki/Identity matrix
- http://en.wikipedia.org/wiki/Determinant
- http://en.wikipedia.org/wiki/Invertible_matrix
- http://www.wikihow.com/Inverse-a-3X3-Matrix

Category:ROOT
Joomla SEF URLs by Artio

