EQUALITY OF TWO MATRICES

Created: Thursday, 24 November 2011 13:11 | Published: Thursday, 24 November 2011 13:11| Written by Super User | Print

Equality of two Matrices

Twomatrices $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]$ are said to be equal if they are of sameorder and each element of A isequal to the corresponding element of B, that is $a_{i j}=b_{i j}$ for all i and j. Symbolically we write it as $A=B$

For example: $\operatorname{If}\left(\begin{array}{ccc}x+3 & z+4 & 2 y-7 \\ -6 & a-1 & 0 \\ b-3 & -21 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 6 & 3 y-2 \\ -6 & -3 & 2 c+2 \\ 2 b+4 & -21 & 0\end{array}\right]$
Find the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$ and z
Solution: Since the matrices are equal, corresponding elements are equal
$x+3=0$
$\mathrm{x}=-3$
$z+4=6$
$\mathrm{z}=2$
$2 \mathrm{y}-7=3 \mathrm{y}-2$
$2 y-3 y=-2+7$
$y=-5$
$\mathrm{a}-1=-3$
$\mathrm{a}=-2$
$2 \mathrm{c}+2=0$
$\mathrm{c}=-1$
$b-3=2 b+4$
b-2b=7
$\mathrm{b}=-7$

Hence, $\mathrm{a}=-2, \mathrm{~b}=-7, \mathrm{c}=-1, \mathrm{x}=-3, \mathrm{y}=-5$ and $\mathrm{z}=2$.
Try this:

1. Given that the following matrices are equal, find the values of x and y.
$A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
$B=\left(\begin{array}{ll}x & 2 \\ 3 & y\end{array}\right)$
(Answer: $\mathrm{x}=1, \mathrm{y}=4$)
2. Given that the following matrices are equal, find the values of x, y, and z .
$A=\left(\begin{array}{ll}4 & 0 \\ 6 & -2 \\ 3 & 1\end{array}\right)$
$B=\left(\begin{array}{ll}x & 0 \\ 6 & y+4 \\ z & / 3\end{array}\right)$
(Answer: $\mathrm{x}=4, \mathrm{y}=-6$, and $\mathrm{z}=9$)

Construction of a Matrix

When the general term and the order of a matrix is given, we can easily construct a matrix.
For example: Construct a 3×4 matrix whose elements are given by $\mathrm{a}_{\mathrm{ij}}=2 \mathrm{i}-\mathrm{j}$
Let the matrix be $A=\left(\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right)$
$\mathrm{a} 11=2-1=1 \quad$ a $12=2-2=0 \quad$ a $13=2-3=-1 \quad$ a $14=2-4=-2$
$\mathrm{a} 21=4-1=3 \quad \mathrm{a} 22=4-2=2 \quad \mathrm{a} 23=4-3=1 \quad \mathrm{a} 24=4-4=0$
$\mathrm{a}_{31}=6-1=5 \quad \mathrm{a}_{32}=6-2=4 \quad \mathrm{a}_{33}=6-3=3 \quad \mathrm{a}_{34}=6-4=2$
$A=\left(\begin{array}{cccc}1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2\end{array}\right)$

Now try it yourself! Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links:

- http://en.wikipedia.org/wiki/Matrix_(mathematics)
- http://www.mathreference.com/la-mpoly,order.html
- http://wiki.answers.com/Q/What_is_order_of_the_resultant_matrix_AB_when_two_matrices_are_multiplied_and_the_order_of_the Category:ROOT
Joomla SEF URLs by Artio

