MULTIPLICATION OF MATRICES

Created: Monday, 28 November 2011 06:51 | Published: Monday, 28 November 2011 06:51 | Written by Super User | Print

Multiplication of a Matrix by a Scalar

When a matrix is multiplied by a scalar then each element of that matrix is multiplied by the scalar. In general, we can say, if $\mathrm{A}=$ [aij]m x n is a matrix and ' k ' is a scalar, then $k A$ is another matrix which is obtained by multiplying each element of A by ' k '.
For example: If $A=\left(\begin{array}{ccc}2 & 3 & 4 \\ 0 & -7 & 1\end{array}\right)$
then, 5 A is obtained by multiplying each element by 5
$5 A=\left(\begin{array}{ccc}10 & 15 & 20 \\ 0 & -35 & 5\end{array}\right)$

Properties of Scalar Multiplication

i) If A and B are matrices and k is a scalar then $k(A+B)=k A+k B$
ii) If A is a matrix and k and 1 are scalars then $(\mathrm{k}+\mathrm{l}) \mathrm{A}=\mathrm{kA}+1 \mathrm{~A}$

Multiplication of Matrices

The product of two matrices A and B is defined if the number of columns of A is equal to the number of rows of B. Let $A=[a i j]$ be $m x n$ matrix and $B=[b j k]$ be an $n x p$ matrix. Then, the product of A and B is a matrix C of order $m x p$.
For example: Find $A B$, if $A=\left[\begin{array}{cc}3 & -2 \\ 4 & 7\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & -3 & 4 \\ 0 & 2 & 5\end{array}\right]$
Solution: Matrix A has 2 columns and B has 2 rows, so number of columns of 1 st matrix is same as number of rows of 2 nd matrix, hence it is conformable for multiplication.

$$
\begin{aligned}
& \mathrm{AB}=\left[\begin{array}{lcc}
3 \times 1+(-2) \times 0 & 3 \times(-3)+(-2) \times 2 & 3 \times 4+(-2) \times 5 \\
4 \times 1+7 \times 0 & 4 \times(-3)+7 \times 2 & 4 \times 4+7 \times 5
\end{array}\right] \\
&=\left[\begin{array}{lcc}
3-0 & -9-4 & 12-10 \\
4+0 & -12+14 & 16+35
\end{array}\right] \\
&=\left[\begin{array}{ccr}
3 & -13 & 2 \\
4 & 2 & 51
\end{array}\right] \\
& \text { Order of } \mathrm{A}=2 \times 2 \text { and order of } \mathrm{B}=2 \times 3 \text {, so order of } \mathrm{AB}=2 \times 3
\end{aligned}
$$

Properties of Multiplication of Matrices

i) Associative Law: For any three matrices A, B and C, we have
$(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$, whenever both sides of equality are defined.
ii) Distributive law: For three matrices A, B and C
a) $A(B+C)=A B+A C$
b) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$
iii) Existence of multiplicative identity: For every square matrix A, there exists an identity matrix of same order such that IA = AI = A

$$
\begin{aligned}
& \text { For example: Find } A^{2}-5 A+6 I \text {, if } A=\left(\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right) \\
& \begin{aligned}
& A^{2}=\left(\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right) \times\left(\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right) \\
&=\left(\begin{array}{ccc}
4+0+1 & 0+0-1 & 2+0+0 \\
4+2+3 & 0+1-3 & 2+3+0 \\
2-2+0 & 0-1-0 & 1-3+0
\end{array}\right) \\
&=\left(\begin{array}{ccc}
5 & -1 & 2 \\
9 & -2 & 5 \\
0 & -1 & -2
\end{array}\right)
\end{aligned} \\
& 5 A=\left(\begin{array}{ccc}
10 & 0 & 5 \\
10 & 5 & 15 \\
5 & -5 & 0
\end{array}\right) \\
& 6 \mathrm{I}=\left(\begin{array}{lll}
6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right) \\
& A^{2}-5 A+6 I=\left(\begin{array}{ccc}
5 & -1 & 2 \\
9 & -2 & 5 \\
0 & -1 & -2
\end{array}\right)-\left(\begin{array}{ccc}
10 & 0 & 5 \\
10 & 5 & 15 \\
5 & -5 & 0
\end{array}\right)+\left(\begin{array}{lll}
6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & -1 & -3 \\
-1 & -1 & -10 \\
-5 & 4 & 4
\end{array}\right)
\end{aligned}
$$

iv) Matrix multiplication is not commutative. If A and B are any two matrices then $A B$? $B A$

Now try it yourself! Should you still need any help, click here to schedule live online session with e Tutor!

About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!

Reference Links:

- http://en.wikipedia.org/wiki/Matrix_(mathematics)
- http://en.wikipedia.org/wiki/Scalar_(mathematics)
- http://www.mathwords.com/r/row_of_a_matrix.htm
- http://www.mathwords.com/c/column_of_a_matrix.htm
- http://en.wikipedia.org/wiki/Associativity
- http://en.wikipedia.org/wiki/Distributivity
- http://dictionary.reference.com/browse/multiplicative+identity

Category:ROOT
Joomla SEF URLs by Artio

