TRIGONOMETRIC FUNCTIONS OF MULTIPLE AND SUBMULTIPLE ANGLES

Trigonometric Functions Introduction

We have learnt about trigonometric functions of the sum and difference of two angles using some basic results, under this section using the trigonometric ratios of the sum and difference of two angles we will define the trigonometric ratios of multiple and submultiple angles. We must be familiar with the following identities before starting this topic:

1.  Cos (A + B) = Cos A Cos B – Sin A Sin B
2. Cos (A – B) = Cos A Cos B + Sin A Sin B
3. Sin (A + B) = Sin A Cos B + Cos A Sin B
4. Sin (A – B) = Sin A Cos B - Cos A Sin B
5. Tan (A + B) = Tan A +Tan B1-Tan A Tan B
6. Tan (A – B) = Tan A - Tan B1+Tan A Tan B



Trigonometric Ratios of Angle 2A in terms of Angle A

•    Sin 2A = 2 Sin A Cos A
As we know, Sin (A + B) = Sin A Cos B + Cos A Sin B

Replacing B by A in the above equation

Sin (A + A) = Sin A Cos A + Cos A Sin A
Sin 2A = 2 Sin A Cos A

•    Cos 2A = Cos2 A – Sin2 A

               = 2 Cos2 A – 1
               = 1 – 2 Sin2 A

As we know, Cos (A + B) = Cos A Cos B – Sin A Sin B


Replacing B by A in the above equation

Cos (A + A) = Cos A Cos A – Sin A Sin A
Cos 2 A = Cos2 A – Sin2 A

  •     Cos 2 A = Cos2 A – Sin2 A

Cos 2 A = (1 – Sin2 A – Sin2 A)
Cos 2 A = 1 – 2 Sin2 A

  •     Cos 2 A = Cos2 A – Sin2 A

Cos 2 A = Cos2 A – (1 – Cos2 A)
Cos 2 A = 2 Cos2 A – 1

•    Tan 2A = 2 Tan A

            1 – Tan2 A

As we know, Tan (A + B) = Tan A +Tan B1-Tan A Tan B


Replacing B by A in the above equation

Tan (A + A) = Tan A +Tan A1-Tan A Tan A
Tan 2A = 2 Tan A
      1 – Tan2 A



Trigonometric Ratios of Angle 3A in terms of Angle A

•    Sin 3A = 3 Sin A – 4 Sin3 A


As we know, Sin (A + B) = Sin A Cos B + Cos A Sin B


Replacing B by 2A in the above equation

Sin (A + 2A) = Sin A Cos 2A + Cos A Sin 2A
Sin 3A = Sin A (1 – 2 Sin2 A) + Cos A (2 Sin A Cos A)

Sin 3A = Sin A – 2 Sin3 A + 2 Sin A Cos2 A

Sin 3A = Sin A – 2 Sin3 A + 2 Sin A (1 – Sin2 A)

Sin 3A = Sin A – 2 Sin3 A + 2 Sin A – 2 Sin2 A

Sin 3A = 3 Sin A – 4 Sin3 A


•    Cos 3A= 4 Cos3 A – 3 Cos A


As we know, Cos (A + B) = Cos A Cos B – Sin A Sin B


Replacing B by 2A in the above equation

Cos (A + 2A) = Cos A Cos 2A – Sin A Sin 2A
Cos 3A = Cos A (2 Cos2 A – 1) – Sin A (2 Sin A Cos A)
Cos 3A = 2 Cos3 A – Cos A – 2 Sin2 A Cos A
Cos 3A = 2 Cos3 A – Cos A – 2 (1 – Cos2 A) Cos A
Cos 3A = 2 Cos3 A – Cos A – 2 Cos A + 2 Cos3 A
Cos 3A = 4 Cos3 A – 3 Cos A

•    Tan 3A = 3 Tan A – Tan3 A

                          1 – 3 Tan2 A

As we know, Tan (A + B) = Tan A +Tan B1-Tan A Tan B


Replacing B by 2A in the above equation

Tan (A + 2A) = Tan A +Tan 2A1-Tan A Tan 2A

•    Tan 3A = Tan A + 2 Tan A

                          1 – Tan2 A
                         1 – Tan A 2 Tan A
                     1 – Tan2 A

On Solving we get:

Tan 3A = 3 Tan A – Tan3 A
                  1 – 3 Tan2 A



Now try it yourself!  Should you still need any help, click here to schedule live online session with e Tutor!



About eAge Tutoring:

eAgeTutor.com is the premium online tutoring provider.  Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.

Contact us today to learn more about our tutoring programs and discuss how we can help make the dreams of the student in your life come true!


Reference Links: