Introduction to Parallel Plate Capacitors
The electric field between the plates of a parallel-plate capacitor
Unit of a Capacitor
Note that the electric field strength, E, can be measured in either the units V/m, or equivalently, N/C.
[E] = V/d
(J/C)/m
(Nm)/C/ m
N/C
Since the field lines are parallel and the electric field is uniform between two parallel plates, a test charge would experience the same force of attraction or repulsion no matter where it was located. That force can be calculated with the equation F = qE.
Energy stored in a Capacitor
Work is done by an external agent bringing in +dq from the negative plate and depositing the charge on the positive plate.
where W is the work measured in joules, q is the charge measured in coulombs and C is the capacitance, measured in farads.
The energy stored in a capacitance is found by integrating this equation. Starting with an uncharged capacitance (q = 0) and work W moves charges from one plate to the other until the plates have charge +Q and −Q:
Want to know more about parallel plate capacitors? Click here to schedule a live session with an eAge eTutor!
About eAge Tutoring:
eAgeTutor.com is the premium online tutoring provider. Using materials developed by highly qualified educators and leading content developers, a team of top-notch software experts, and a group of passionate educators, eAgeTutor works to ensure the success and satisfaction of all of its students.
Contact us today to learn more about our guaranteed results and discuss how we can help make the dreams of the student in your life come true!